If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=16t^2+21120t
We move all terms to the left:
0-(16t^2+21120t)=0
We add all the numbers together, and all the variables
-(16t^2+21120t)=0
We get rid of parentheses
-16t^2-21120t=0
a = -16; b = -21120; c = 0;
Δ = b2-4ac
Δ = -211202-4·(-16)·0
Δ = 446054400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{446054400}=21120$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21120)-21120}{2*-16}=\frac{0}{-32} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21120)+21120}{2*-16}=\frac{42240}{-32} =-1320 $
| -9s+41=-14 | | 21120=16t^2+1024t | | 16+4t-24=0 | | 9(s-1=18 | | 72,5=35y | | 12x+48x+12x=528 | | 12x+24(2x)+3(4x)=528 | | 2x/(x-3)=-3 | | x+x-100=180 | | -2g+4=8 | | 1/2h+7=10 | | -2(z-11)+1=-11z+11(z-11) | | 6x+(1/2)x=18 | | 4x×4x×2=640 | | (2x^2)-400=0 | | F(t)=-2t²+12t | | y,14y-8=13 | | (2x/5)=20 | | (t/4)=5 | | (5x^2)/(2x)=6 | | 0.15y=50 | | Y=x5-4x3+2x-3 | | (3/7)+x=(17/7) | | 16x-4=4x+1+2x+2 | | 2y+4/5=12 | | X-16=6-z | | z/(z-7.5)=12.5/10 | | 2x³+30x=17x² | | x²+3x–49=0 | | z,7=z+5 | | z,7=z+5* | | 16+x-11=9 |